High-Q and High-Sensitivity Photonic Crystal Cavity Sensor
نویسندگان
چکیده
منابع مشابه
High-Q side-coupled semi-2D-photonic crystal cavity
High-Q semi-2D-photonic crystal cavities with a tapered edge and side-coupled bus waveguide are demonstrated. With a quadratic design, the unloaded cavity presents a theoretical ultrahigh quality factor up to 6.7 × 10(7) for the condition that there are mere 34 holes in the propagated direction, which is pretty close to the 2D and 1D counterpart. Combined with a side-coupled bus waveguide, an a...
متن کاملSlow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon.
Current trends in photonic crystal microcavity biosensors in silicon-on-insulator (SOI), that focus on small and smaller sensors have faced a bottleneck trying to balance two contradictory requirements of resonance quality factor and sensitivity. By simultaneous control of the radiation loss and optical mode volumes, we show that both requirements can be satisfied simultaneously. Microcavity se...
متن کاملHigh-Q Defect-Free 2D Photonic Crystal Cavity from Random Localised Disorder
We propose a high-Q photonic crystal cavity formed by introducing random disorder to the central region of an otherwise defect-free photonic crystal slab (PhC). Three-dimensional finite-difference time-domain simulations determine the frequency, quality factor, Q, and modal volume, V, of the localized modes formed by the disorder. Relatively large Purcell factors of 500–800 are calculated for t...
متن کاملFirst-principles method for high-Q photonic crystal cavity mode calculations.
We present a first-principles method to compute radiation properties of ultra-high quality factor photonic crystal cavities. Our Frequency-domain Approach for Radiation (FAR) can compute the far-field radiation pattern and quality factor of cavity modes ~ 100 times more rapidly than conventional finite-difference time domain calculations. We explain how the radiation pattern depends on the pert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Photonics Journal
سال: 2015
ISSN: 1943-0655
DOI: 10.1109/jphot.2015.2469131